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1. Introduction 

Compared with the traditional gun steel nozzle, the ceramic nozzle can sustain higher 
combustion temperatures and maintain structural integrity.  It has great potential to be used in a 
variety of gun structures (1).  However, test results showed some surface cracking on the ceramic 
nozzles.  Initial analysis indicated that the excessive thermal stresses during firing lead to 
compressive strains in the nozzle which can cause cracking when it cools (2).  In fact, the 
dynamic, ballistic impact when firing has the same stress level as that produced by the thermal 
stress.  The surface failure should be considered as arising from the combination of both stresses.  
In order to quantify the failure stresses, it was necessary to conduct a stress analysis.  Finite 
element models (FEMs) are used to simulate the ceramic nozzle thermal and dynamic stress.  In 
the first section, a three-dimensional (3-D) ABAQUS (3) model is built to predict the transient 
thermal stress.  The model is sequentially-coupled because the stress deformation is small 
enough that it does not affect the next heat conduction step.  If the thermal deformation is not 
negligible, a fully-coupled model should be used.  For verification purposes, an analysis using a 
fully-coupled model was also conducted and compared with the sequentially-coupled model 
results.  In the second section, a DYNA3D (4) model is also used to determine the nozzle 
response from the internal ballistic load.   

2. Ceramic Nozzle Structure and Materials 

In the test, a ceramic nozzle composed of steel and ceramic sections is mounted in the 37-mm 
gun fixture as shown in figure 1.  The steel nozzle section rests on the shoulder of the chamber.  
A metal rupture disk and spacer are tightened against the nozzle by a threaded retainer.  The disk 
breaks during firing and releases the chamber pressure.  The ceramic nozzle inner radius is 
6.35 mm and the outer radius is 12.7 mm.  The ceramic nozzle thickness is 12.7 mm.  Three 
ceramic materials were selected for study; the steel nozzle was used as a comparison baseline.  
The detailed mechanical properties and coefficient of thermal expansions (CTE) of these 
candidate ceramics and the test fixture model components are listed in table 1.   

3. Sequentially-Coupled and Fully-Coupled Thermal Stress FEM Analysis 

The commercially available finite-element code ABAQUS (3) was used to model the full-scale 
test fixture.  The transient thermal stress precedes the thermal deformation determination.  If 
such deformations are relatively small such that they do not change the following heat transfer  
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Figure 1.  Schematic details of the ceramic nozzle.   

 

Table 1.  The material and mechanical properties of the model components.   

Part Name Material Modulus
(GPa) 

Poisson’s Ratio Density 
(kg/m3)k

CTE 
(1/Co) 

Chamber Steel 207 0.3 0.039 8.4 
Disk Steel 207 0.3 0.101 8.4 
Spacer Steel 207 0.3 0.697 8.4 
Retainer Steel 207 0.3 0.283 8.4 
 SN47 310 0.27 0.283 3.2 
Ceramic nozzles STK 300 0.25 0.043 3.3 
 ZRO2 210 0.23 0.039 11.8 

 
analysis iteration, the heat conduction can be calculated independently for the firing cycle.  
Based on this temperature history, the thermal stress simulation can then be conducted for the 
same time period.  This simulation procedure is called sequentially-coupled thermal stress 
analysis.  If the thermal stress deformation is large enough, the fully-coupled thermal stress 
analysis must be applied for subsequent heat transfer as a function of the stress deformation.  
Since the fully coupled simulation requires approximately 10× more computing time than that of 
sequentially-coupled simulation, it is recommended to adopt sequentially coupled analysis 
whenever possible (3).   
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The main FEM work for the modeling is inputting the mechanical and geometric data, i.e., 
constructing nodes and elements, and applying interface and boundary conditions. 

The model input includes geometric data, mechanical properties, and temperature histories.  The 
space and time dependent temperature resultant profiles for steel, silicon nitride (SN47), sialon 
(STK4), and zirconia (ZRO2) ceramic nozzles from Huang et al. (5) are used as input histories 
here.  The thermal stress simulations follow these temperature profiles.  The mechanical 
properties of each ceramic nozzle are provided in Swab and Wereszczak (1) and steel-parts 
properties are available from the engineering handbook (6) and shown in table 1.   

ABAQUS (3) keywords were used to generate the nodes and elements.  The keyword input is 
more effective to conduct parametric studies.  Four node axisymmetric elements were chosen for 
the analysis.  Extra care was taken in meshing each part of the model, with regard to their 
common edges.  Dense meshes were placed near the nozzle surface area due to the large 
temperature gradients there.  Figure 2 shows the axisymmetric, thermal stress model.  There are 
about 75,000 elements total in the model.  The sequentially-coupled thermal stress model 
requires that the node and element meshing be exactly the same as that in the heat conduction 
analysis (5). 

 

 

Figure 2.  Axisymmetric thermal stress model. 

The test chamber end nodes have fixed boundary conditions applied such that they cannot move 
in any direction.  The retainer and spacer are considered perfectly connected to the chamber. 
This equates to the elimination of thread gaps.  The nozzle and steel disk share the common 
nodes and are in contact and connected to the fixture.   

The firing cycle lasts about 30 ms.  The maximum centerline gas temperature is 2700 ºC and 
occurs at 13 ms into the firing sequence.  The time increment used in the modeling is 0.2 ms.   
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4. Ceramic Nozzle Thermal Stress Response  

In the thermal stress analysis, the conventional steel nozzle was used as a baseline.  The SN47, 
STK2, and ZRO4 ceramics were selected as candidate materials for the nozzle analysis.  For 
analysis and comparison convenience, the Huang et al. (5) temperature gradient under the steel 
nozzle surface and the surface temperatures for the steel and ceramic nozzles are plotted in 
figures 3 and 4, respectively.  For the all-steel nozzle, the temperature 0.1 mm below the surface 
is 450 °C cooler.  Intuitively, the hot nozzle surface expansion is restrained by the inside cooler 
materials.  The large thermal gradients cause compression stresses near the surface.  For the 
different ceramic materials, the surface temperatures are varied as shown in figure 4.  The ZRO2 
ceramic nozzle has the highest temperature at 2100 °C, while the baseline material steel nozzle 
has the lowest temperature at 1750 °C.   
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Figure 3.  Temperature gradient near the steel nozzle surface. 
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Figure 4.  Surface temperatures for the ceramic nozzles.   

Figure 5 shows each transient thermal surface stress component response of the steel nozzle.  
The hoop stress reaches its peak value at 3000 MPa in compression and the axial stress reaches 
its peak value at 1950 MPa at the in-bore time of 16 ms.  The peak in-plane shear stress and 
radial stress are relatively small at 1000 and 600 MPa, respectively.  More details of the hoop 
stress and in-plane shear stress are discussed for each nozzle material.   
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Figure 5.  Thermal surface stress components for the steel nozzle. 
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Figure 6 shows the hoop contours for the steel and ceramic nozzles at their peak values.  The 
thermal compression stress areas are limited to near the surfaces.  ZRO2 ceramic shows  
4000 MPa hoop stress, which is much higher than those of ceramic nozzles SN47 and STK4, 
which have stresses of 1850 and 1600 MPa, respectively.  The surface hoop stress profiles of 
these nozzles are plotted in figure 7.  The thermal hoop stresses of SN47 and STK4 are less than 
that of the steel nozzle.   
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Figure 6.  The hoop stress contours for the steel and ceramic nozzles at peak values.   

 

0

1000

2000

3000

4000

5000

0 0.005 0.01 0.015 0.02 0.025 0.03

Time (s)

H
oo

p 
C

om
pr

es
iv

e 
St

re
ss

 (M
pa

)

Steel
SN47
STK4
ZRO2

 

Figure 7.  The thermal hoop stress profiles for the steel and ceramic nozzles. 
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The brittle ceramics have significant compressive material strength but are susceptible to tensile 
and shear stresses.  For design purposes, the shear stress requires investigation.  Figure 8 shows 
the shear stress profiles of the four nozzles.  Although the shear stresses are much smaller 
compared to the hoop stresses, the shear stresses may cause tension failures along the surface 45° 
directions according to stress status theory (7).  The ceramic material shear strength must also be 
examined for the nozzle designs.  In the current cases, the 3-D principle stresses of the ceramic 
nozzles are all in compression; the complicated 3-D thermal stress states are all in compression 
regardless of shear stress.   
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Figure 8.  The thermal shear stress profiles for the steel and ceramic nozzles. 

5. Ceramic Nozzle Dynamic FEM  

In the dynamic FEM analysis, the basic simulation procedure is the same as that in the thermal 
FEM analysis.  DYNA3D, developed by Lawrence Livermore National Laboratory (4), was used 
as the FEM code.  In the input data, the internal ballistic pressure is identified (8) and used as the 
DYNA3D loading.  The dynamic FEM is shown in figure 1.  The corresponding mechanical 
properties of the model parts and ceramic nozzles are given in table 1.  In the model, the interfaces 
among the chamber, spacer, and retainer are fixed.  The nozzle and steel disk are in contact 
between the chamber shoulder and the spacer.  Commercially-available preprocessing software 
MSC_PATRAN* was used to generate the model.  Three-dimensional 8-node Hex8 brick 
elements were used in the model.  Once again, additional care was taken for meshing each part 
of the model along their common edges.  There are approximately 37000 solid elements and 

                                                 
*PATRAN is a registered trademark of MSC Software Corporation, Los Angeles, CA. 
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45000 nodes total in the DYNA3D model.  The model was generated using a PATRAN script 
file, which lends itself easily to parametric studies.  The impact loading time is about 5 ms (see 
figure 9).  The maximum pressure is 350 MPa and occurs at 25 ms into the launch.   
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Figure 9.  The internal ballistic load on the ceramic nozzles. 

In the FEM simulation, data are saved every 0.5 ms for a total of 50 ms.  A complete 32-bit 
simulation requires about 40 hr of CPU time on an SGI Origin 3000 server series or 22 hr on a 
Linux Powell server.  In the analysis of the results, the focus is placed on the ceramic nozzle 
stress distributions and profiles (peak values).  The combinations of both thermal and dynamic 
loads are considered in the material selection criteria.  The post-process software HYPERVIEW* 
was used to generate the stress contours of the ceramic nozzles and stress wave animations 
during the firing cycle.  

6. Ceramic Nozzle Dynamic Responses and Discussions 

In the stress analysis, the peak stress contours are examined in order to determine the locations of 
the compressive or tensile stresses.  The polar stress components are obtained and plotted in a 
Cartesian coordinate frame (explained in the appendix).  As shown in figure 10, the hoop stress 
varies from compression in the top entrance area to tension in the bottom area.  The tension hoop 
stress reaches it highest value at 700 MPa, especially in the inner bottom corner.  This tensile 
stress is dominant for the nozzle cracking.  The radial, axial, and shear stress are quite small and 
well below the material strength.  In the dynamic analysis, the hoop tensile stress determines the 
ceramic nozzle failure criteria. 
                                                 

*HYPERVIEW, version 7.0, is a registered trademark of Altair Engineering, Troy, MI. 
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Figure 10.  The stress component contours at the peak time for the steel nozzle plotted in the  
z-plane (see the appendix). 

Figure 11 shows the peak hoop stress contours for steel and ceramic nozzles.  The hoop stress 
distributions for the SN47, STK4, and ZRO2 nozzles are basically the same.  The nozzle 
entrance areas are subjected to compression.  The nozzle bottom inner areas are in tension.  The 
maximum tensile stresses are at the 700 MPa level for these three ceramic nozzles.  If any of 
these ceramics have tensile strengths smaller than 700 MPa, cracks or material separations can 
be expected to occur.   
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Figure 11.  The hoop stress contours for the steel and ceramic nozzles plotted in the z-plane 
(see the appendix). 
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Once the maximum tensile stress locations are determined, the stress profiles at these points can 
be plotted in time; these are given in figure 12.  The hoop stresses are subjected to tensile stress 
over the entire dynamic response time for the steel and ceramic nozzles.  The radial stresses, by 
contrast, are always in compression and peak near 350 MPa.   
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Figure 12.  The steel and ceramic nozzle dynamic stress profiles. 

From the previous discussion, the nozzle hoop stresses seem to play crucial roles in material 
selections and nozzle designs.  Further comparisons and discussion will be given in the next 
section. 

7. The Comparisons of Thermal and Dynamic Stress 

For the comparisons, the contours from the thermal hoop stress and dynamic hoop stresses at 
their peak values are plotted in figure 13 for the steel nozzle.  Obviously, they have different 
stress distributions.  For the thermal hoop stress, the stress gradient is along the surface normal 
towards the inside of the nozzle.  The maximum stress occurs in the nozzle entrance area.  The 
gradient is sharp at 15 GPa per mm in compression.  For the dynamic stress, the stress gradient is 
in compression at the top of the nozzle and in tension at the bottom.  The maximum tension 
stress occurs at the nozzle inner corner at a value near 700 MPa, which may cause ceramic 
nozzle fracture failures.   
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Figure 13.  The hoop stress features for the thermal and dynamic loads.   

Since the nozzle is subjected to both thermal and dynamic loads in the test,  their peak values 
may not occur at the same time and the stress signs may be opposite for the transient stress cases.  
The combined effect has to be considered.  Since both thermal and dynamic analyses are based 
on linear assumptions, the total result is the superposition of both corresponding individual 
results.  Figure 14 shows the thermal and dynamic hoop stress profiles in the steel nozzle inner 
bottom corner area (maximum tensile stress location).    
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Figure 14.  The transient thermal and dynamic hoop stresses. 
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From figure 14, it is seen that the peak thermal stress is delayed about 0.35 ms from the peak 
dynamic stress.  Since their signs are opposite, the dynamic tension stress partially offsets the 
thermal compressive stress.  Since the peak tension stress occurs at 1.25 ms, the maximum 
tensile stress is not markedly reduced.  Similar stress situations are found for the ceramic 
nozzles.  In table 2, the peak values of stresses for steel and ceramic nozzles are summarized for 
both thermal and dynamic analyses.    

Table 2.  The summary table of peak thermal and dynamic stresses for the steel and 
ceramic nozzles.   

Nozzle Materials Radial 
(MPa) 

Hoop 
(MPa) 

Shear 
(MPa) 

Steel (thermal) 520 (compressive) 2890 (compressive) 895 
Steel (dynamic) 310 (compressive) 1770 (tension) 100 
SN47 (thermal) 325 (compressive) 1770 (compressive) 55 
SN47 (dynamic) 345 (compressive) 825 (tension) 70 
STK4 (thermal) 270 (compressive) 1430 (compressive) 460 
STK4 (dynamic) 375 (compressive) 825 (tension) 80 
ZR02 (thermal) 825 (compressive) 4050 (compressive) 1340 
ZR02 (dynamic) 310 (compressive) 750 (tension) 80 

 

It is noted from the table that the hoop stresses for each material are dominant.  They not only 
have the highest compressive stresses but also have the most noticeable tensile stress.  For the 
three ceramic nozzles, they have the same level of dynamic tensile stress (750 and 825 MPa).  
However, the ZRO2 ceramic material has significantly higher compressive thermal hoop stress at 
a value of 4050 MPa.  Relatively, the SN47 and STK4 ceramics have lower thermal compressive 
stresses at vales of 1770 and 1430 MPa, respectively.   

8. Conclusion 

Three ceramic nozzles, SN47, STK4, and ZRO2, have been investigated and compared with a 
traditional steel nozzle.  The ABAQUS FEM code is used for thermal stress analysis and the 
DYNA3D FEM code is used for dynamic stress analysis.  In the thermal stress analysis, the 
temperature histories previously obtained for each material are sequentially input into transient 
stress analysis.  The thermal stress distributions and profiles for the steel and ceramic nozzles are 
obtained.  The fully-coupled thermal stress analysis was performed and shown to produce nearly 
identical results for the sequentially-coupled analysis.  In the dynamic analysis, the interior 
ballistic pressure is applied to the nozzles.  The dynamic responses show significant tensile hoop 
stresses for all the steel and ceramic nozzles.  The thermal stresses are all limited in compression 
for the nozzles.  Both maximum thermal hoop stresses and dynamic tensile stresses of steel and 
ceramic nozzles are given in table 2.  ZRO2 ceramics have the highest thermal compressive hoop 
stress.  These stress results are essential for design, test, and reference purposes.  
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Appendix.  The Stress Relationship Between the Polar and Cartesian 
Coordinate Systems 

The general relationship between Polar and Cartesian coordinate systems for the stress 
components is shown in the following transformation matrix.  For special cases, when the angle 
θ equals to 0° or 90°, the relations in figure A-1 pertain.  

 

c2 s2 2sc
s2 c2 -2sc
-sc sc  c2-s2

σr
σθ
τrθ

=

σz
σy
τzy

c2 s2 2sc
s2 c2 -2sc
-sc sc  c2-s2

σr
σθ
τrθ

=

σz
σy
τzy

σr
σθ
τrθ

=

σz
σy
τzy

σz
σy
τzy

, (A-1) 

where C = cosθ and S = sinθ. 
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Figure A-1.  Stress relationship between Polar and Cartesian coordinate systems. 
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